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t Department of Applied Mathematics and Physics, Kyoto University. Kyoto 606-01, Japan 
t Department of Systems and Control Engineering, Osaka Prefectural College of Technology. 
Neyagawa. Osaka 572, Japan 

Received 4 November 1993 

Abstraet A number of researches have been made for the (Euclidean) Taub-~m metric, 
because the geodesic for this meuic describes approximately lhe motion of well separated 
monopole-monopole interaction. From the viewpoint of dynamical systems. it is well known 
also that the T a u h u T  mebic admits the Kepler-type symmetry. and hence provides a non- 
trivial generalization of the Kcpler problem. Mare specifically speaking, because of an U ( 1 )  
symmetry. the geodesic Row system as a Hamiltonian system for the TaubNrrr metric is reduced 
to a Hamiltonian system which admits a conserved Runge-Lenz-lie vector in addition to the 
angular momentum vector. and thereby whose trajectories tum out to be conic sections. In 
particular. all the bounded trajectories of the reduced system are closed. In this paper, the 
T m b - ~ m  metrics is generalized so that the reduced system m y  remain to have the property 
that all of bounded trajectories are closed. On the application of BMrand‘s method to the 
reduced system, two types of systems are found: one is called the Kepler-type system and the 
other the harmonic oscillator-type system: Correspondingly, two typesof merrics come ~ t :  
the kpler-type metric and the harmonic oscillator-type meuic. Furthermore, the symmetry of 
the Kepler-type system and of the harmonic oscillator-type system are studied through forming 
accidental first integrals. Thus the generalization of the Taub-Nm metric accomplishes non- 
trivial generalizations of the Kepler problem and Ihe harmonic oscillator. 

1. Introduction 

It is well known in classical mechanics that only the Kepler problem and the harmonic 
oscillator are those central-potential dynamical systems whose bounded trajectories are all 
closed. This fact was proved by Bertrand (1873) in the last century, and is referred to as 
Bertrand’s theorem. Furthermore, these systems have been well studied for a long time for 
their remarkable symmetry. 

On the other hand, active attention has been paid to the T a u b N U T  metric, because the 
motion of well separated monopole-monopole interactions is described approximately by 
the geodesics of the Taub-NUT metric (Manton 1982, 1985, Atiyah and Hitchin 1985). From 
the viewpoint of dynamical systems, the geodesic motion of the Taub-NUT metric is known 
to admit the Kepler-type symmetry (Gibbons and Manton 1986, Gibbons and Ruback 1987, 
1988, Feh6r and Horvkhy 1987, Cordani, Feh6r. and HorviUhy 1988, 1990). To be precise, 
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as a Hamiltonian system, the geodesic flow system for the Taub-NUT metric is reduced to 
a Hamiltonian system on T*(lR3 - (0)). which admits the Kepler-type symmetry. One can 
actually find the so-called Runge-Lenz vector in addition to the angular momentum vector. 
As a consequence, all of the bounded trajectories are closed, and those conserved vectors 
put together are shown to be closed under the Poisson brackets with respect to the reduced 
symplectic form on the reduced phase space T*(R3 - (0)). Thus the Taub-NUT metric 
provides a non-trivial generalization of the Kepler problem. 

In view of Bertrand's theorem. a question arises as to what metric will provide a non- 
trivial generalization of the harmonic oscillator. In clearing up this question, Bertrand's 
method will provide a guiding principle. The main interest of this paper is accordingly the 
periodicity of trajectories of a reduced system defined on T*(R3 - (01). One may look 
forward to finding a metric which admits the harmonic oscillator-type symmetry in contrast 
to the Taut-NUT metric which admits the Kepler-type symmetry. To this end, a generalized 
TaUb-NUT metric with undetermined functions, f ( r )  and g(r ) ,  of radius r is to be defined on 
R' - [O), The geodesic flow system for this metric is a Hamiltonian system on T*m4 - IO)) 
and can be reduced to a Hamiltoniansystem on T*m3 - (0)) by using the U(1) symmetry. 
By the application of Bertrand's method, the functions f ( r )  and g ( r )  are to be determined 
so that bounded trajectories of the reduced system may be all closed, and thereby two types 
of reduced systems are specified. One is called the Kepler-type system, and the other the 
harmonic oscillator-type system, which are named after the form of the Hamiltonian with 
specified functions f(r) and go) .  Correspondingly, two typesof generalized TaUb-NUT 
metrics are found, the Kepler-type metric and the harmonic oscillator-type metric. Thus the 
non-trivial generalization of the harmonic oscillator is accomplished. In spite of being old- 
fashioned, the Bertrand method proves to be of practical use in finding dynamical systems of 
marked periodicity property. The Kepler-type metric was already found in another method 
and investigated in a preceding paper (Iwai and Katayama 1993) in the name of the extended 
Taub-NUT metric; according to this paper, the extended Taub-NUT metric comes to have 
a self-dual Riemann curvature tensor or a confonnally self-dual Weyl curvature tensor, 
depending on the choice of parameters included. It was also shown in the same paper that 
the Kepler-type system admits Kepler-type symmetry. 

The plan of this paper is as follows. Section 2 contains the setting up for the reduced 
Hamiltonian system from the geodesic flow system for a generalized Taub-NUT metric. In 
section 3, a necessary and sufficient condition will be found for any bounded trajectories 
of the reduced Hamiltonian system to be closed, after the Bertrand method. Two types of 
Hamiltonian systems, the Kepler-type system and the harmonic oscillator-type system, will 
come out and thereby two types of generalized Taub-NUT metrics will be determined, the 
Kepler-type metric and the harmonic oscillator-type metric. Section 4 is concerned with 
the symmetry of the reduced Hamiltonian systems obtained above. The symmetry to be 
found will make sure that the Kepler-type and the harmonic oscillator-type systems are 
indeed a non-trivial generalization of the the Kepler problem and of the harmonic oscillator, 
respectively. The Kepler-type system in this article is also an extension of the Hamiltonian 
system which is reduced from the geodesic flow system for the Taub-NUT metric. As for 
a generalization of the harmonic oscillator, over twenty years ago McIntosh and Cisneros 
(1970) considered the harmonic oscillator in Dirac's monopole field, but they were unable 
to succeed in discussing the symmetry of that system. The harmonic oscillator-type system 
found in this article is a generalization of their system as well, and is shown to admit 
the harmonic oscillator-type symmetry. which this system is expected to have. Section 5 
contains remarks. 

T Iwai and N Katayama 
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2. Setting up 

Let (yJ, U = 1. . . . ,4, be the Cartesian coordinates of R4. We introduce the curvilinear 
coordinates (r, e,', +) by *+' yz=z/;cos-sm- e .  *+' y, = &cos cos - 

0 .  e-' (2.1) 
2 2 

2 2 

2 

2 2 
y3 = J sin - cos - *-' y 4 = f i s i n -  

where r > 0, 0 < 0 < x ,  0 < $ < k, 0 < * < 4rr. We are going to consider a 
generalized TaubNUT metric in the f o b  

(2.2) 

where f ( r )  and g(r )  are arbitrary functions of r .  For f ( r )  = 1 + (4m/r) and g(r) = 
(4m)*/1 + (4m/r), dsi becomes the Euclidean Taut-NUT metric. 

The Lagrangian of the geodesic flow on the tangent bundle T(R4 - (0)) takes the form 

dsi = f(r)(dr2 + r2(dQ2 + sinZ8 a@)) + g(r)(d* + cos8d')' 

L = ~ f ( r ) ( i . 2 + r 2 ~ ~ 2 + s i n 2 8 $ 2 ) ) +  $g(r)(jr+cose$)' (2.3) 

where (r, e,', *, i ,  8, $, 4) are local coordinates of the tangent bundle T(R4- (0)). Since * is a cyclic variable, 

LC. =g(r)(jr+cose$) (2.4) 

is a conserved quantity. This fact is in keeping with the bundle structure R4-(0) -+ R3 40) 
with structure group U(l),  whose action is expressed as * + + I .  In the Hamiltonian 
formalism, the conserved quantity is obtained as follows: The infinitesimal generator 
of the U(1) action takes the form a/a*. so that the conserved momentum is given 
by LC. = p* = y(a/a*), where y is the canonical one-form on the cotangent bundle 
T*(R4 - (0)) with local coordinates (r, 8 ,  q5, *, p r ,  pe,  p e .  pp). 

The reduction procedure with LC. E R fixed results in the Hamiltonian system on 
T*(R3 - (0)) 2 (R3 - (0)) x R3 with Cartesian coordinates (xj ,  p j ) ,  j = 1,2,3, 

where r = m. For the reduction, see, for example, Iwai and Uwano (1986). We 
notice here that the variables (r, 8,') are viewed as the usual spherical coordinates in the 
space R3 - (0). 

We are to write out the equation of motion for the reduced system (T*(R3 - 
(O)), w,, HJ. Let X q  be the Hamiltonian vector field for Hw, which is defined through 
-dHw = ~ ( X n , , ) o ~ ,  where L denotes the interior product. A calculation gives the XH,, and 
hence the equation of motion in the form 
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where x denotes the vector product operation and the prime means a derivative with respect 
to r .  

Like the ordinary central-potential system, ow system admits the angular momentum J 
due to manifest spherical symmetry: 

T Iwai and N Katayama 

(2.8) CL 
r 

The fact that the inner product of J with x / r  is a constant, 

J = x X P + - X .  

X 
J . - =  !J' (2.9) 

implies that the trajectories of our system in the x-space lie on the cone whose axis is in 
the direction of J .  Thus our system can be reduced further to a system of two degrees 
of freedom. To make things precise, we have to assume that IJI # 11.~1. In fact, from the 
definition (2.8), the square of J is given by 

(2.10) 

r 

I J12 = lx x pI2 + w2 
so that if I JI = 11.~1 the cone on which trajectories lie contram to the axis in the direction 
of J .  

The Hamiltonian system (T'(R3 - (O)), w,, H,) covers a class of dynamical systems 
of particular interest. For example, for 

f ( r )  = 1 g ( r )  = - (2.11) 
r z  

(1 - r)2 
the Hamiltonian Hp has the form 

(2.12) 

which is called the Mic-Zwanziger system (Zwanziger 1968, McIntosh and Cisneros 1970). 
If one sets 

r2 
k = const > 0. (2.13) f ( r )  = 1 g ( r )  = 1 - 2kr/p2 

one has the MIc-Kepler problem (McIntosh and Cisneros 1970, Iwai and Uwano 1986). 

As was touched upon already, for the functions 

(2.14) 

(2.15) 

we have the reduced system from the geodesic flow system for the Euclidean Taut-NUT 
metric. The reduced Hamiltonian then takes the form 

(2.16) 

These systems have the respective Runge-Lenz-like vectors in addition to the angular 
momentum J ,  and hence the trajectories in the x-space are shown to be conic sections 
(Gibbons and Manton 1986, Gibbons and Ruback 1987, 1988, FehQ and Horvithy 1987, 
Cordani, FehQ. and Horvfithy 1988, 1990, Iwai and Uwano 1986). This means that all the 
bounded trajectories are closed. 
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Another example is obtained by setting 

with a resulting Hamiltonian 

(2.17) 

(2.18) 

This system was ueated by McIntosh and Cisneros (1~970) and may be called the MIC- 
harmonic oscillator. All orbits for the MIC-harmonic oscillator are shown to be closed, 
which will be explained in the closing remarks of the next section. 

In view of the above examples, we are prompted to ask when (or for what f ( r )  and 
g ( r ) )  all of the bounded trajectories of the Hamiltonian system (T*(R3 - (O]), w,, HJ are 
closed. This question will be worked out in the following section. 

3. The Kepler-type and harmonic oscillator-type metrics 

In this section, we are to derive a certain class of generalized Taub-NUT metrics. In the 
last section, we have derived the equation of motion for the reduced Hamiltonian system 
(T*(R3 - (0)). up, HJ. Further, we have observed from (2.9) that our system can be 
further reduced to a system of two degrees of freedom. Bertrand’s method is applicable to 
this two-degrees-of-freedom system. We will then be able to find a necessary and sufficient 
condition for any bounded trajectories of the reduced system to be closed, and thereby to 
determine the unknown functions f ( r )  and g ( r )  in the Hamiltonian Hw. Getting back to 
ds;, these functions will provide the Kepler-type and the hannonic oscillator-type metria 
as generalized Taut-m metrics. 

Without loss of generality, we can set J in the direction of the q-axis. Then the variable 
0 is constant during the motion, so that the angular momentum vector, being associated with 
the infinitesimal rotation about the x3-axis, is shown to satisfy 

J := 1.71 = f ( r ) r z d .  (3.1) 
From (2.3) the conserved energy can be put in the form 

Equations (3.1) and (3.2) provide the equations of motion on the cone. On introducing the 
variable U = l / r ,  equations (3.1) and (3.2) are expressed, respectively, as 

(3.3) 

(3.5) 

By taking 4 as a parameter describing trajectories, we put the above equations together to 
obtain 

(2)’ = f (2Efi (U) - Jzuz + pzu2 - p*gl (U)) (3.6) 
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As pointed out in the last section, we have assumed that 1.71 # Ip(. so that we are allowed 
to take ( U .  +) as the coordinates of the cone. The case of 1.71 = Ipl will be dealt with 
at the end of this section. Equation (3.6) is the fundamental equation for which we are to 
investigate whether bounded trajectories are all closed. If the trajectory U = U(@) is closed, 
U should have a maximum and a minimum. Let u1 be a minimum and u2 the following 
maximum the trajectory takes as @ increases. Since du/d@ = 0 for those values, one has, 
from (3.6). 

T Iwai and N Katayama 

2 E f i ( u e ) - ~ : J ~ + p ~ ( ~ ~ - g g l ( ~ t ) ) = O  k =  1.2. (3.7) 
The increment of the angle, A@, during the motion from U = u1 to the following U = uz 

J du 
follows from (3.6) by 

(3.8) 
ZEfi(u) - J W  + p2u2 - p2gi(u)' 

.@=IFJ 
We assume further that no critical values of U exist between U ]  and u2. Then a necessary 
and sufficient condition for the trajectory to be closed is that A@ = qn for some rational 
number q. We now introduce functions fz(u) and g2(u) defined by 

(3.9) fdu) = fl(4 - 1 g m  = gl(u) - u2 
and. further, the function V ( u )  by 

V ( U )  = fpZg2(u) - f2WE (3.10) 

where E is considered as a constant. Then equation (3.8) turns into 
J du 

2(E - V(u) )  - J2u2' 
(3.11) 

This equation is the same as the one which Bemand (1873) treated in the ordinary central- 
potential problem (see also Greenberg (1966)). For V(u) ,  the condition (3.7) is put in the 
form 

(3.12) 

According to Bertrand (1873). the condition A@ = qn for any bounded trajectory to be 
closed determines the function V ( u )  in the form 

2(E - V(U,)) - J'U; = 0 k = 1.2. 

(3.13) 
(3.14) 

where 
from (3.13) and (3.14). 

and $1 are constants. Going backward, we will find the functions f ( r )  and g(r )  

From (3.13) together with (3.9) and (3.10). one has 

fp2gz(U) - f i ( u ) E  = tau + Cl. (3.15) 

Since p and E should be arbitrary constants, both off&) and g2(u) in the left-hand side 
of (3.15) must be inhomogeneously linear in U ,  

fdu) = 11lU + 112 (3.16) 

where 9". U = 1. ., 4, are constants. Then, through (3.5) and (3.9), f ( r )  and g ( r )  are found 
to be 

gz(u) = 113u + 114 

(3.17) 
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where a,  b, c, d are constants. Conversely, the increment (3.8) for the functions given in 
(3.17) is expressed and calculated as 

(3.18) 

if the quadratic polynomial in the radical has the positive roots, U I  and u2. Hence, any 
bounded trajectory with J # p is closed. For the functions (3.17), the Hamiltonian (2.6) is 
put in the form 

(3.19) 

Since this Hamiltonian covers the MIc-Zwazinger- and the Mlc-Kepler-problem 
Hamiltonians, (2.12) and (2.14), we call the Hamiltonian system (T*(R3 - (0)). U,, H,) 
with (3.19) the Kepler-type system. On a similar idea, we call the metric (2.2) together 
with (3.17) the Kepler-type metric, and denote it by dsi; 

(d+ + cos0 d@)'. (3.20) (a + br)r 
1 + c r  + dr2 

(dr2 + r2(d02 + sin' 0 dq52)) + a + br 
&2 - - 
K -  r 
On the other hand, from (3.14) we are led to 

(ar2 + b)r2 
1 + cr2 + dr4'  

f ( r )  =ar2  + b g(r )  = (3.21) 

Conversely,~ for these functions, the increment A@ takes the~value 
lr - _  - (3.22) 

if the quartic polynomial coming out from the quantity in the radical has positive roots, U I  
and u2. Equation (3.22) means that all bounded trajectories with J # p are closed. For 
(3.21). the Hamiltonian (2.6) takes the form 

J du 
'@ = lr JZbE - cp2 + (2nE - dp2)u-2 - J2u2 2 

(3.23) 

which covers the MIC-harmonic oscillator Hamiltonian (2.18). We then call the Hamiltonian 
system (T*(R3 - {O)), U,, H,) with (3.23) the harmonic oscillator-type system, and hence 
the metric (2.2) with (3.21) the harmonic oscillator-type metric, denoting it by dsi; 

(ar2 + b)r2 
1 + cr2 + dr4 d s i  = (ar2 + b)(dr2 + r2(dO2 + sin2 0 d@')) + (d+++osOdq5)'. (3.24) 

We have so far discussed closed trajectories in the case of J # p. Now we have to 
deal with the case of J = p, where the motion takes place in the direction of J. For the 
Kepler-type system, we obtain from (3.2) the equation 

(3.25) 

A comparison of this equation with the quantity in the radical of (3.18) shows that bounded 
motion will take place between r2 < r < rl with ri = l/ui, i = 1,2. The trajectory is then 
closed, of course. For the harmonic oscillator-type system, the equation we have is written 
as 

$car'+ b)'rZi2 = (uE - $dp2)r4 + (bE - 1cp2)r2 - $p2 .  (3.26) 

In view of (3.22) and (3.26), we see that the bounded motion takes place between rz < r < rl 
as well, where rl and r2 are roots of the quartic polynomial of the right-hand side of (3.26). 

$(a + br)'i2 = (bE - $dp2)r2 + (aE - $cp2)r - 5 p ~  I 2  
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Thus we have shown that all the bounded trajectories of both the Kepler-type system and the 
harmonic oscillator-type system are closed. The above discussion results in the following 
theorems: 
Theorem 3.1. Among the Hamiltonian systems (T*(R3 - IO]), w,,. H J ,  there exist two 
kinds of systems in which all of the bounded trajectories are closed; one is the Kepler-type 
system with the Hamiltonian (3.19) and the other is the harmonic oscillator-type system 
with the Hamiltonian (3.23). 
Theorem 3.2. The Euclidean Taut-NUT metric is generalized to the Kepler-type metric 
and to the harmonic oscillator-type metric, given by (3.20) and (3.24), respectively, whose 
associated dynamical systems are the Kepler-type system and the harmonic oscillator-type 
system stated in theorem 3.1. 

Closing this section, we remark on the Mlc-harmonic oscillator. We have already shown 
that all the trajectories of the MIC-harmonic oscillator are closed. In fact, for f ( r )  and g ( r )  
given in (2.17). equation (3.22) turns into 

T Iwai and N Katayama 

(3.27) 

which is the same as those used for the ordinary harmonic oscillator, so that all the 
trajectories are closed for the MIC-harmonic oscillator as well. 

4. First integrals and symmetry 

In this section, for the Kepler-type system and the harmonic oscillator-type system, first 
integrals other than the angular momentum vector J will be found, and the Poisson brackets. 
among them will be calculated. 

We start with the Kepler-type system. It is well known that for the Taub-NUT metric, 
the vector 

(4.1) 

is a conserved vector, where E is the total energy (Gibbons and Manton 1986). In view of 
(4.1), we can assume that a vector similar to (4.1) is a conserved vector for the Kepler-type 
system; 

X 
R = p x  J - E -  (4.2) 

Then the condition that R is a conserved vector, 
r 

where a is a constant of motion. 
dRfdt = 0, for the equation of motion (2.7) turns out to be 

(4.3) 

Since f ( r )  and g ( r )  for a Kepler-type system are given by (3.17), condition (4.3) is satisfied 
and results in 

W2 o r = a H , - -  
2 (4.4) 

where H,, is the total energy (3.19). Thus we have obtained the Rung-Lenz-lie vector R, 
which is a generalization of (4.1). We here notice that, though the Kepler-type system is 
derived in this article by applying Bertrand's method for closed trajectories, the system can 
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be derived as well from the assumption of the conserved vector of the form (4.2). For the 
detail of the derivation, see Iwai and Katayama (1993). 

The existence of the angular momentum vector J and the Runge-Lenz-like vector (4.2) 
' with (4.4) shows that the trajectories are conic sections on the cone determined by (2.9). 

Trajectories are hyperbolae, parabolae, or ellipses, depending on whether 2bH, - d$ is a 
positive, zero or negative constant (see Iwai and Katayama (1993) for details). This fact is 
the same as in the case of the Taub-NUT metric (Gibbons and Manton 1986, Gibbons and 
Ruback 1987, 1988, Fehdr and Horvithy 1987, Cordani, Fehdr, and Horvithy 1988, 1990). 

The commutation relations among the first integrals are 

{ J t ,  4)  CEajJj 

{Jc, = C Q k j R j  (4.5) 

{Re, Rk) = (dp2 - 2bHW) CEajJj 

where Je and Re are the components of the conserved vectors J and R. respectively. The 
Poisson bracket is, of course, defined with respect to the symplectic form (2.5); for functions 
A and B. the Poisson bracket is given by 

According to whether dp2-2bH,  is a positive, zero, or negative constant, the commutation 
relations (4.5) are those for the Lie algebra of SO(4). E(3) ,  or SO(1,3), respectiuely. 

We now turn to the harmonic oscillator-type system. For setting up, we first mention 
the MIC-harmonic oscillator. For f ( r )  and g ( r )  given in (2.17). the equation of motion 
(2.7) can be put in  the form 

(4.7) 

where J is given by (2.8). From this, one has the equation 
dz 
-J x x = - k J x x  dt2 (4.8) 

which means that J x x is subject to the equation of motion for the ordinary harmonic 
oscillator. Using (4.Q McIntosh and Cisneros (1970) derived a dyadic constant of motion 
in the same manner as that for the hannonic oscillator. However, unfortunately, those 
constants of motion (i.e. the components of the dyadic) are not closed under the Poisson 
bracket to form the Lie algebra of SU(3). For the quantized MIC-harmonic oscillator, 
a spectral generating algebra has been studied in Jakiew (1980). and renewed interest is 
found for accounting for the degeneracy of the energy levels (Labells, Mayrand, and Vinet 
1991). 

To deal with the symmetry for the harmonic oscillator-type system, it is of great use to 
introduce new variables ( X i ,  Pj)  after Boulware, Brown, Cahn, Ellis, and Lee (1976). The 
transformation they defined, called the BBCEL transformation, is given by 

(4.9) 

where I J I  > 1/11 has been assumed. Let us recall that, from (2.10). the condition IJI > lpl 
is equivalent to I J I  # 1/11 and means that the cone on which trajectories lie does not contract 
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to the axis in the direction of J. Geometrically speaking, the BBCEL transformation in the 
case of IJI IpI maps trajectories on the cone to those on the plane perpendicular to J, 
since X .  J = P . J  = 0. A straightforward calculation shows that the BBCEL transformation 
satisfies 

T Iwai and N Katayama 

1x1 = 1x1 = r 
L := x x P = x X P + P  X = J 

r 

(4.10) 

(4.1 1) 

X . P = x . p  (4.12) 

P2 
[ P I 2  = Ip12 + - (4.13) 

r2 

(4.14) 

According to Feht?r (1987), the standard symplectic form WE (defined below) is pulled back 
by the BBCEL transformation to the symplectic form U,, defined in (2.5). 

W E  := Z d P j  A dXj = 0,. (4.15) 

Thus thereduced system (T*(R3-{O}), up, HJ with the restriction IJI > 1p1 is transformed 
into the dynamical system ( M E ,  W E ,  H E ) ,  where M E  is the phase space given by 

(4.16) ME = ((x, p); Ix x PI > b11 
and HE is the Hamiltonian defined through (4.14). 

(4.17) 

Note that the BBCEL transformation (4.9) is invertible. 
For the harmonic oscillator-type system, the Hamiltonian (4.17) can be rewritten as 

(4.18) 
1 

a r 2 + b  
H E  = - (LIPI2 + &dp2r2 + icp’). 

We rewrite this equation as 

bHB - +cp2 = +[PI2 + &(dp2 - 2aHB)r2. (4.19) 

If we think of the HE in the right-hand side as a constant, and if the coefficient dp2 - 2a HE 
is positive, then the right-hand side may be considered as the Hamiltonian for the ordinary 
harmonic oscillator, so that we may expect that the tensor defined by 

(4.20) Mjk := PjPk f (dp2 - 2aHB)xjxk  
will be conserved. In fact, one can show by a straightforward calculation that 

( H E ,  Mjx}B = 0 (4.21) 

where the Poisson bracket is defined through the symplectic form O B ,  which is the standard 
one. Note here that the Hamiltonian HE in the right-hand side of (4.20) is treated as a 
function in calculating (4.21). 

The Poisson brackets among first integrals, Mi, and L = (Lk) = X x P,  are shown to 
satisfy 

( L i ,  LjlE = X E i j k L k  

tMi j ,  Lk)a = XEti i lMt j  + XEcjkMic  (4.22) 

tMij ,  M k f l ~  = (dp2 -  HE) c(8ikEjPm +8ir&jkm + 8jkEih i-8jeEikm)Lm. 
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From this we conclude that if dp2 - 2aHB is a positive constant, these first integrals form 
the Lie algebra of SU(3). Thus we recognize that the harmonic oscillator-type system 
admits the SU(3) symmetry if dp2 - 2aHB =- 0. Note here that if dp2  - ; ?~HB is a 
positive constant, so is 2 b H ~  - cp2 from (4.19). so that bounded trajectories must occur. 
Further, the total energy E = HB must satisfy the inequality cp2/2b < E < dp2/2a if 
Q > 0, b > 0, which makes a remarkable contrast with the ordinary harmonic oscillator. 

We can treat the Kepler-type system as well by the use of the BBCEL transformation. In 
a similar manner to (4.19), we can obtain the expression for the Hamiltonian of this system 
as 

which suggests that 

R s = P x L -  ~ H B - -  - ( '% 
may be a conserved vector. One can actually show that 
is shown to be related to the RungeLenz-like vector R 

(4.23) 

(4.24) 

H B .  RB)B = 0. Further, the RB 
ken by (4.2) with (4.4); 

(4.25) 

As is expected, the constants of motion L and RB satisfy the same commutation relations 
as (4.5) under the Poisson brackets ( , ) B .  

5. Concluding remarks 

In this article, Bertrand's method played a central role. This method provides a guiding 
principle for finding dynamical systems of particular interest. We have indeed accomplished 
non-trivial generalization of the Kepler problem and the harmonic oscillator in association 
with generalized Taub-NUT metrics. Other dynamical systems were found after the same 
method about a decade ago; one of the authors (NK) and Ikeda (1982) applied Bertrand's 
method to a central-potential problem on a space of constant curvature to find a generalized 
Kepler problem and a generalized harmonic oscillator, which systems are the same as those 
found by Nishino (1972) by investigating first integrals quadratic in momenta. 

Geometric properties of the Kepler-type metric have been studied in the preceding paper 
(Iwai and Katayama 1993). in which the Riemann and the Weyl curvature tensors of this 
metric are investigated from the view point of selfduality and conformal self-duality. On 
the other hand, the Kepler-type system can be considered as a generalization of the MIC- 
Kepler problem. The latter system has been studied extensively in a series of papers (Iwd 
and Uwano 1986, 1988, 1991a. b, Iwai 1993) from the view point of global symmetry. The 
global symmetry of the Kepler-type system and of the harmonic oscillator-type system will 
be a future problem to study. 
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